The gluonic Boer-Mulders effect

Marc Schlegel

Institute for Theoretical Physics University of Tuebingen

in collaboration with Werner Vogelsang

"GaryFest 2010", JLab, October 28, 2010

Diphoton production

Marc Schlegel (U. Tüb.)

Two highly energetic real photons produced with

$$q \equiv q_a + q_b$$

$$\frac{d\sigma}{d^4 q_a \, d^4 q_b} = \frac{d\sigma}{d^4 q \, d^4 q_a} \propto \frac{\delta'(q_a^2)\delta'((q-q_a)^2)}{2 \times 4F} \sum_X |M|^2 \delta^{(4)}(P_a + P_b - q - P_X)$$

121

October 28, 2010

Convenient choice: Diphoton rest frame \rightarrow Collins-Soper frame

 $\begin{array}{l} \text{Photon angles:} \\ d^4 q_a \rightarrow d\Omega = d\phi \, d\cos\theta \\ \text{angular dependences:} \\ \hline \frac{d^6\sigma}{d^4 q \, d\Omega} = 2 \frac{d^6\sigma}{dy \, dQ^2 \, d^2 \vec{q_T} d\Omega} \end{array}$

<u>Unfortunately</u>: No separation into <u>hadronic</u> – <u>photonic</u> parts possible! $\rightarrow all$ angular modulations are allowed, in principle.

$$\frac{d^6\sigma}{dy\,dQ^2\,d^2\vec{q_T}\,d\Omega_a} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm}(y,Q^2,q_T^2)\,Y_{lm}(\Omega_a) \qquad C_{00} = \frac{d^4\sigma}{dy\,dQ^2\,d^2q_T}\,,\dots$$

However, we can calculate the cross section in the parton model.

TMD tree-level formalism

Parton model tree-level at $O(\alpha_s^0)$:

$$\mathbf{k}_{\tau} \text{-correlator:} \left[\Phi_{ij}(x, \vec{k}_T) = \int \frac{dz^- d^2 z_T}{(2\pi)^2} \, \mathrm{e}^{ik \cdot z} \langle P, S | \, \bar{q}_j(0) \, \mathcal{W}^{?/DY}[\mathbf{0} \, ; \, \mathbf{z}] \, q_j(z) \, |P, S \rangle \right|_{z^+=0}$$

 \rightarrow can be parameterized in terms of TMDs according to quark / nucleon spin

Main result of the TMD tree-level formalism:

Marc Schlegel (U. Tüb.)

$$\left(\frac{d^6\sigma^{hh\to\gamma\gamma X}}{dy\,dQ^2\,d^2q_T\,d\Omega}\right)(\Lambda\sim q_T\ll Q) = \frac{2}{\sin^2\theta} \left(\frac{d\sigma^{hh\to l^+l^- X}}{dy\,dQ^2\,d^2q_T\,d\Omega}\right)(\Lambda\sim q_T\ll Q\,|\,e_q\to e_q^2)$$

Numerical estimate for the Sivers effect: Enhancement of event rate by factor 5 - 10

GaryFest 2010, JLab

Wilson lines

GaryFest 2010, JLab

Marc Schlegel (U. Tüb.)

Gluon TMDs in diphoton production

Unique feature of diphoton production \rightarrow direct sensitivity to gluon TMDs at O($^{2}_{s}$)

- Current conservation \rightarrow "boxes" are IR and UV-finite \rightarrow effectively "tree-level"
- Large gluon distribution at smaller x compensates $_{s}^{2}$ suppression \rightarrow competing process to quark antiquark generated diphotons

Marc Schlegel (U. Tüb.)

- Polarized gluon TMDs at smaller $x \rightarrow$ possible contributions feasible at RHIC
- Interaction of two gluons generates new azimuthal asymmetries that are absent for quark antiquark scattering \rightarrow e.g., cos(4 ϕ) asymmetry in unpol. scattering

GaryFest 2010, JLab

Gluon TMD Correlator:

$$\Gamma_{\mu\nu;\lambda\eta}(x,\vec{k}_T) = \frac{1}{xP^+} \int \frac{dz^- d^2 z_T}{(2\pi)^2} \,\mathrm{e}^{ik\cdot z} \langle P,S | F^{\alpha}_{\mu\nu}(0) \,\mathcal{W}^{\alpha\beta}[0\,;\,z] \,F^{\beta}_{\lambda\eta}(z) \,|P,S \rangle \Big|_{z^+=0}$$

Gluon TMDs:

unpolarized hadron:

$$\Gamma_U^{+i;+j}(x,ec{k}_T) = rac{\delta^{ij}}{2} f_1^g(x,ec{k}_T^2) + rac{k_T^i k_T^j - rac{1}{2} ec{k}_T^2 \delta^{ij}}{2M^2} h_1^{\perp g}(x,ec{k}_T^2)$$

$$\frac{\text{long. pol. hadron:}}{\Gamma_L^{+i;+j}(x,\vec{k}_T) = S_L \frac{i\epsilon_T^{ij}}{2} g_1^g(x,\vec{k}_T^2) + S_L \frac{k_T^i \epsilon_T^{jk} k_T^k + (i\leftrightarrow j)}{4M^2} h_{1L}^{\perp g}(x,\vec{k}_T^2)}$$

$$\begin{aligned} \frac{\text{transv. pol. hadron:}}{\Gamma_T^{+i;+j}(x,\vec{k}_T) &= -\frac{\delta^{ij}}{2} \frac{k_T \times S_T}{M} f_{1T}^{\perp g}(x,\vec{k}_T^2) + \frac{i\epsilon_T^{ij}}{2} \frac{\vec{k}_T \cdot \vec{S}_T}{M} g_{1T}^{\perp g}(x,\vec{k}_T^2)} \\ & + \frac{\epsilon_T^{ik} \left(S_T^j k_T^k + k_T^j S_T^k\right) + (i \to j)}{8M} h_{1T}^g(x,\vec{k}_T^2) + \frac{k_T^i \epsilon_T^{jk} k_T^k + (i \leftrightarrow j)}{4M^2} \frac{\vec{k}_T \cdot \vec{S}_T}{M} h_{1T}^{\perp g}(x,\vec{k}_T^2)} \end{aligned}$$

October 28, 2010

11111232492

Marc Schlegel (U. Tüb.)

Gluon TMDs at the LHC:

Diphoton production \rightarrow important process for Higgs production at LHC

 \rightarrow <u>Background process</u>: diphoton production via quark-box \rightarrow gluon TMDs feasible

<u>Unpolarized gluon-gluon cross section ($q_{T} \ll Q$):</u>

Marc Schlegel (U. Tüb.)

 $\frac{\mathrm{d}\sigma_{UU}}{\mathrm{d}^4q\,\mathrm{d}\Omega} \sim \left(\frac{\alpha_s}{2\pi}\right)^2 \left(\mathcal{F}_1(\theta)[f_1^g \otimes f_1^g] + \cos(2\phi)\mathcal{F}_2(\theta)[h_1^{\perp g} \otimes f_1^g + f_1^g \otimes h_1^{\perp g}] + \cos(4\phi)\mathcal{F}_3(\theta)[h_1^{\perp g} \otimes h_1^{\perp g}]\right)$

 \mathcal{F}_i : non-trivial functions of sin(θ) and cos(θ) (Logarithms)

Factor α_s^2 compensated by (possibly) large unpol. and Boer-Mulders gluon TMDs $\cos(4\phi)$ induced by gluon Bour-Mulders functions only, no corresponding DY term. Polarized collisions (RHIC 500GeV): gluon Sivers function, work in progress...

GaryFest 2010, JLab

High - q_T of diphoton production

At large $q_T \sim Q \rightarrow \text{transverse}$ momentum generated by gluon radiation

\rightarrow collinear parton model calculation

quark - antiquark scattering:

quark - gluon scattering:

Marc Schlegel (U. Tüb.)

However: No model-independent angular decomposition!

Diphoton angles enter the partonic cross section in numerator and denominator \rightarrow All angular dependencies are allowed.

Situation simplifies for smaller $q_{\tau} \rightarrow \text{Expansion in } 1/q_{\tau}$ Leading order $(Q^2/q_{\tau}^2) \rightarrow \text{`TMD-rule'' still applies!}$ Higher orders $\rightarrow \text{`TMD-rule'' broken, collinear divergences}$

 $\sigma^{DP} = \frac{2}{\sin^2 \theta} \sigma^{DY} (e_q \to e_q^2) + \mathcal{O}(1/q_T)$

October 28, 2010

Isolation of direct photons

Hide collinear divergence in photon fragmentation function:

Potentially endangers TMD-factorization

October 28, 2010

• Photon FF unknown

Circumvent the problem \rightarrow Isolation [Frixione PLB 429,369; Frixione, Vogelsang NPB 568, 60] Experimental necessity \rightarrow diphotons from π° -decays

Define "cone" in rapidity – azimuthal angle space:

$$\mathcal{C}_{\gamma}(R_0) \equiv \left\{ (\eta, \phi) \, | \, \sqrt{(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2} \le R_0
ight\}$$

1. "Traditional" Criterium: allow certain percentage of hadronic energy inside the cone

$$E_T(R_0) \le \epsilon q_{T\gamma}$$

- Boost-invariant criterium.
- Infra-red safe.
- Allows certain contribution from fragmentation photons.

<u>2. "Improved" Criterium:</u> dynamically generated cone $R < R_0$

$$|E_T(R) \le \epsilon_\gamma \, q_{T\gamma} \, f(R)|$$

Marc Schlegel (U. Tüb.)

- Boost-invariant criterium.
- Infra-red safe.
- Cuts out all fragmentation photons.
- Experimentally harder \rightarrow needs high resolution in η and ϕ .

Define phi moments:

$$\langle \cos(n\phi) \rangle = \int_0^{2\pi} d\phi \cos(n\phi) \frac{d\sigma}{dy \, dQ^2 \, d^2q_T \, d\Omega}$$

111116283

Marc Schlegel (U. Tüb.) GaryFest 2010, JLab

Numerical results

GaryFest 2010, JLab

October 28, 2010

Marc Schlegel (U. Tüb.)

Summary:

- Drell-Yan cross section can be decomposed model-independently into angular structure function, not possible for photon pair production
- TMD-factorization at low q₁: Photon pair production similar to Drell-Yan
- Sivers effect similar in Photon pair production, but higher production rate
 → simultaneous measurement
- Photon pair production directly sensitive to Gluon TMDs via quark box \rightarrow high energy experiments (LHC, RHIC)
- Collinear factorization at larger q₁: all azimuthal modulations possible for photon pair production in contrast to lepton pair production
- Expansion to smaller q₁: Azimuthal behaviour partly recovered
 - \rightarrow photon fragmentation or Isolation needed.